LA INTERVENCIÓN EN LAS TORRES DE SERRANOS: EL PROYECTO Y LA OBRA

Francisco Cervera Arias
Camilla Mileto

El 14 de agosto de 1999 el Ayuntamiento de Valencia publicó las bases para la contratación de “la redacción del proyecto básico de restauración y ejecución de la primera fase de las obras de mantenimiento, conservación y limpieza de las Torres de Serranos”, siendo el sistema de adjudicación del contrato establecido el concurso mediante procedimiento abierto. La adjudicación definitiva fue decretada por la Comisión de Gobierno el 17 de diciembre de 1999.

Tras la realización de los estudios previos necesarios y después de repetidas reuniones de una comisión formada por técnicos de la Dirección General de Patrimonio de la Consellería de Cultura, técnicos del Servicio de Proyectos y del Servicio de Patrimonio del Ayuntamiento de Valencia y la Asistencia Técnica de la empresa adjudicataria, se presentó el día 12 de junio de 2000, un avance del Documento de Diagnosis, a completarse en cuanto quedasen instalados definitivamente los andamios, en el que se proporcionan los criterios de actuación que permitiesen redactar el proyecto.

El día 17 de julio de 2000 se presentó al Excmo. Ayuntamiento de Valencia la “Memoria para la autorización de la instalación del andamio, previo a los trabajos de mantenimiento, conservación y limpieza de las Torres de Serranos”, solicitando el permiso para la instalación del andamio y poder completar el Documento de Diagnosis. La Alcaldía el día 26 de julio resolvió autorizar la instalación del andamio y el día 2 de agosto se aprobó el Plan de Seguridad y Salud relativo a la instalación del andamio.

Tras estos antecedentes y una vez realizadas unas pruebas complementarias en zonas en que no se pudieron realizar en la primera fase de diagnosis por no tener accesibilidad a dichos lugares, se presentó el proyecto en noviembre de 2000. Aprobado el proyecto se procedió a la firma el acta de comprobación del replanteo por parte de los técnicos municipales, la empresa adjudicataria y la asistencia técnica, con fecha 17 de enero de 2001 señalándose ese día como inicio oficial de las obras.

Durante la ejecución de las obras de mantenimiento, conservación y limpieza el Ayuntamiento de Valencia planteó a la empresa adjudicataria del concurso la realización de las obras de limpieza y conservación relativas al foso y pretiles, no contemplados en el proyecto original.

Se redactó el correspondiente proyecto con carácter de obras complementarias en virtud de lo dispuesto en el artículo 141 de la Ley de Contratos de las Administraciones Públicas, incluyéndose en él obras que no figuraban en el proyecto/contrato original, adjudicándose de acuerdo con los precios que regían el contrato primitivo. El conjunto de las obras encargadas se terminó en febrero de 2002.
EL PROYECTO

El propio título del proyecto “Mantenimiento, conservación y limpieza de las Torres de Serranos” limita el ámbito de actuación a los trabajos correspondientes a la limpieza y conservación de los paramentos murarios interiores y exteriores, bóvedas y pavimentos, así como elementos leñosos y metálicos que conforman el conjunto monumental de las Torres de Serranos.

La justificación de las soluciones adoptadas en el proyecto (foto 1) viene determinada por los criterios de intervención establecidos como consecuencia de los estudios realizados en la fase de diagnóstico y por las pruebas ejecutadas in situ sobre varios de los paramentos realizadas previamente a la redacción del proyecto.

En el estudio previo realizado, quedaron identificados todos los litotipos que forman la imponente masa pétrea de las fábricas de las Torres de Serranos e igualmente quedaron identificados el tipo de deterioro que éstos han sufrido por el paso del tiempo, los agentes contaminantes, las variaciones climáticas, el ataque biológico, etc.

Los objetivos principales de la limpieza fueron: una limpieza gradual y progresiva, no agresiva, medida según la necesidad del caso, la conservación de la coloración rojiza de la piedra, el máximo respeto de la pátina del tiempo de manera compatible con las necesidades conservativas del monumento.

Por la gran variedad de tipos de piedra y géneros de deterioro, se previó en el proyecto el uso de diferentes tipos de tratamiento de limpieza, ajustados según cada caso. Así, se consideraron métodos de limpieza con agua precalentada a 60º y baja presión (en los casos en que el nivel de suciedad se presentaba todavía controlado y la piedra no tenía costra negra), métodos de limpieza con proyección en húmedo a baja presión (en caso de costras negras con espesor considerable), métodos de limpieza con proyección en seco (en las zonas donde la aportación de agua pudiera afectar la conservación de la piedra en el futuro o por presencia de sales o de biodeterioro), cepillado manual con cepillo de cerdas blandas (en el caso de presencia de microorganismos vegetales), y métodos de limpieza química en el caso de piezas labradas.

Tras los trabajos de limpieza se consideró la necesidad de proceder de una forma generalizada a la hidrofugación mediante la aplicación de un concentrado de alquilciclohexanos oligoméricos.

El estudio previo e inspección visual cercana brindada por el montaje del andamio permitió aseverar que solamente era necesario un tratamiento de aplicación de un consolidante previamente a la limpieza en las escasas zonas donde existían sillares ejecutados con calizas arenosas con un alto nivel de erosión. De la misma manera se tuvo que prever el mismo tratamiento para las piezas esculpidas situadas bajo los canes de apoyo de las bóvedas del paso de ronda y en los arranques de las nervaturas.

De los ensayos realizados se pudo averiguar la existencia de cinco tipos de morteros: de cal, de cal y cemento, de cemento y yeso, de cal, cemento y yeso, y de cemento. Además se acometió un estudio del estado de degradación de los morteros y se detectaron las zonas de desprendimientos o escasa fijación de los rejuntados.
Se consideró la necesidad de eliminar las juntas que presentaban problemas de fijación a la fábrica, y las juntas que estaban realizadas con morteros de cemento así como los que contenían yeso, a causa de la posibilidad de formación de sales que podían afectar a la conservación de la misma piedra.

Para todos los elementos de madera y de hierro se propuso solamente un tratamiento de limpieza y conservación, sin prever ningún tipo de integración o sustitución. Según la misma línea de intervención, para las policromías de las bóvedas se propuso un tratamiento de limpieza previo por aspiración y consolidación de los pigmentos existentes para, posteriormente, colocar una protección impermeable hecha a medida, ligada a las bóvedas con burlete sintético y plástico de recubrimiento que protegiera a las pinturas durante la limpieza. Una vez limpias las bóvedas se procedió a la retirada de la protección y a la eliminación de las partes adheridas a la superficie pétre.

1. Plano de proyecto de la Torre de Levante.
LA REALIZACIÓN DE LA OBRA

El andamio

En los trabajos de Mantenimiento, Limpieza y Conservación de las Torres de Serranos se ha empleado un andamio tubular desmontable. Se trata de un sistema modular de tres componentes (verticales, horizontales y diagonales), cuyo material fundamental es acero galvanizado en caliente. El andamio se asentó sobre una losa colocada en el foso para regularizar la superficie de apoyo (fotos de 2 a 4).

Tanto por motivos de seguridad como por deseo expreso del Exc.mo Ayuntamiento de Valencia, promotor de las obras, se colocó una lona microperforada, con una decoración, coloreada de manera limitada, que no distorsionaba el paso de la luz en los trabajos de limpieza, lo que podría conducir a grados de limpieza erróneos (fotos 5 y 6). Además, durante los trabajos de montaje del andamio se procedió a realizar ensayos de tracción sobre los anclajes del mismo, máxima dadas las solicitudes a que podían ser sometidos como consecuencia de la lona microperforada.

Durante los trabajos de limpieza se realizaron retiradas parciales de la lona que permitieran ver los resultados que se estaban obteniendo (foto 7).
El agua empleada en los trabajos de limpieza

Para evitar el problema de migración de sales y deposición de las mismas sobre la superficie, se empleó agua desmineralizada en los trabajos de limpieza sobre paramentos que presentaban eflorescencias salinas.

En el resto de paramentos, los sistemas de limpieza en húmedo o aclarados se realizaron con agua tomada de la red general previa descalcificación. La colocación de un descalcificador (foto 8) en la red de suministro de los aparatos de limpieza vino motivado por la gran concentración de cal en el agua de Valencia, la cual podía haber quedado depositada en superficie tras los aclarados que conllevan los sistemas de limpieza (foto 9).
Los trabajos de repicado

Como criterio general de actuación se eliminaron todas las juntas que presentaban problemas de fijación a la fábrica e, igualmente, se procedió al repicado de todas las juntas que estaban realizadas con morteros de cemento, así como los que contenían yeso, fundamentalmente los morteros formados por cemento, cal y yeso, realizando éstos con medios mecánicos con la máxima prudencia y procediendo a un repaso manual de los labios con una gradina. Esta actuación se justificó por los fenómenos de degradación que se producían en el rejuntado según su composición (reacción del aluminato tricálcico en el mortero que contiene cemento, hidratación de la anhidrada en el mortero que posee yeso...). Los trabajos de repicado se realizaron en algunos casos después de las de limpieza, puesto que la existencia de costra no permitía distinguir el trazado de las juntas.

El repicado, tras la realización de algunas pruebas con métodos manuales y mecánicos, se realizó con un sistema mecánico. El sistema mecánico al que se hace referencia consistió en un pequeño martillo compresor al que se le aplicó un puntero, con unos topes laterales que evitaban un exceso de profundidad en el repicado y limitaban la profundidad. Además, se ajustó la presión de trabajo a un máximo de 2,5 kg/cm². Mediante esta herramienta el repicado podía controlarse y medirse de manera mucho más precisa respecto a un repicado manual (foto 10).

Por otra parte, otro de los parámetros a tener en cuenta en el repicado de las juntas fue la profundidad. Tras varias visitas de obra la asistencia técnica, con el apoyo y la supervisión de los técnicos municipales y de Consellería, estimó como válido el criterio de repicar las juntas en una profundidad de 1 a 2 veces el ancho de la misma (foto 11). Se dio el caso de juntas muy deficientes en las que este criterio quedaba obsoleto, por lo que se procedió a la completa eliminación de la junta hasta la profundidad en que aparecía el original mortero de cal.

En las naves interiores inicialmente no se tenía previsto el repicado de las juntas, puesto que, no obstante la heterogeneidad de las juntas a causa de las numerosas reparaciones, no presentaban ningún fenómeno de alteración. Sin embargo una vez instalados los andamios se pudo observar la existencia de reparaciones en las que se empleó mortero de cemento y yeso con el consiguiente riesgo de la futura migración de sales y sus evocas erosión de la piedra, cuando el fenómeno ya no era presente.

Como hecho curioso, se debe señalar que durante el repicado de las juntas aparecieron unos sillares que "escondían" los mechinales (fotos 12 y 13) en los que entraban las vigas traviesas del andamio de madera que se empleó en la construcción del adarve de las Torres de Serranos.
Los trabajos de rejuntado

Durante el estudio previo se pudo identificar el mortero original de cal, y se realizaron los correspondiente ensayos compositivos con objeto de proceder a su reposición en aquellas juntas que habían sido eliminadas. Sin embargo, se encontró un mortero de cal preparado que se acercaba a la composición del mortero original y que, en consecuencia, se adoptó en los trabajos de rejuntado (fotos de 14 a 16). Se trata de un mortero de cal ensacado de dosificación 1:4 con una relación entre arena silúrea y arena calcárea de 1/1.

Las diferentes caras de las torres habían asumido con el paso del tiempo diferentes coloraciones según la orientación. Se consideró por lo tanto oportuno utilizar pigmentos naturales para colorear el mortero en toda su masa según la coloración de la zona superior, paso de ronda y zona inferior.

Respecto a la forma del rejuntado ejecutado, tras haber eliminado la junta resaltada, puesto que se tenía constancia de que el resaltado de la junta se realizó en el periodo entre 1888-1917, y puesto que este tipo de junta actúa como soporte ante una acumulación de polvo y contaminación (origen de serias degradaciones), se realizó una "junta enrasada cóncava" evitando así la retención de agua y, por tanto, la aparición del biodeterioro, la deposición del polvo, y la formación de costra negra.

Durante la ejecución de las obras se descubrió lo que muy probablemente fue el acabado de las juntas originales: enrasada, brújula y con cortes longitudinales (foto 17). Es destacable el hecho de que encontramos también que, para remarcarlas visualmente, se había pintado el eje de las juntas con negro, dándose el caso de que algunas de estas líneas no seguían su trazado, sino que estaban realizadas por encima del siller; algo motivado, sin duda, por una rigidez meticulosa en el trazado de la malla que conformaba el rejuntado.
Limpieza con proyección de árido en húmedo

El sistema de proyección de árido en húmedo que se empleó, permite utilizar tres variables diferentes: el tipo de abrasivo (silice, polvo de vidrio, microesferas de vidrio, etc), la presión (que en ningún caso superó los 2 kg/cm²) y posibilidad de variar, según el tipo de soporte pétreo a limpiar y su estado de conservación, el volumen tanto de agua como de abrasivo. Se trata de un sistema por tanto perfectamente adaptable a situaciones diferentes y a una limpieza graduada según las necesidades de los diferentes casos.

Este método se empleó en todas las zonas que presentaban costra negra (foto 22) o un nivel de suciedad que no permitía obtener un buen resultado con una limpieza con agua a presión. En concreto, se utilizó en todos los paramentos exteriores desde el nivel del adarve hacia abajo y en algunas zonas del interior (foto 23).
La consolidación

En el estudio previo se identificaron todos los litotipos que conforman la imponente masa pétre de las fábricas de las Torres de Serranos e igualmente se identificaron los tipos de deterioro que éstos han sufrido por el paso del tiempo, los agentes contaminantes, las variaciones climáticas, el biodeterioro, etc.

Según criterios definidos en el proyecto de ejecución derivados del citado estudio se procedió a aplicar un consolidante en zonas donde existían sillares o piezas esculpidas realizadas con piedra tipo calcarenita cuya composición (porcentaje de sílice superior al 30%) asociada a los fenómenos de degradación, ha motivado una fuerte pérdida en su matriz cementante.

Así pues, se consolidaron los canes tanto interiores como exteriores, los altorrelieves y toda la lacería (foto 24), teniendo en cuenta que antes de proceder a la limpieza (química y mecánica) hubo que realizar una preconsolidación de todos estos elementos dada la poca dureza que poseían. Se empleó, tanto en la preconsolidación como en la consolidación, un consolidante compuesto por esteres etílicos del ácido silícico y polisiloxanos oligoméricos, disueltos en aguarrás mineral para un óptimo grado de absorción hasta el núcleo sano de la piedra. Los esteres etílicos reaccionan y se transforman en gel de sílice y alcohol etílico.

Puntualmente se realizaron consolidaciones de sillares dado su estado de conservación (foto 25). Éstas se llevaron a cabo sobre los sillares situados en las almenas correspondientes al cuerpo central de la fachada norte. Las aplicaciones del producto se realizaron con el soporte totalmente seco y no se hidrofugó hasta pasadas cuatro semanas, que es el tiempo que necesita el producto para completar su reacción. Asimismo se consolidaron los restos de pinturas que, en referencia al día de la finalización de la Guerra Civil española, aparecieron en el paramento del cuerpo central de la fachada sur recayente a la Plaza de los Fueros.
La hidrofugación

Se aplicó un tratamiento de hidrofugación generalizado a toda la superficie pétrea.

Como criterio de aplicación no se hidrofugó en ningún caso hasta que el soporte no estuvo totalmente seco (téngase en cuenta que el método de limpieza adoptado fue en húmedo lo que, sobre todo en naves interiores, supuso un importante condicionante en el planning de obra). El orden de aplicación fue lógicamente el impuesto por el montaje y desmontaje de los andamios, es decir, de la torre de levante a la de poniente, primero en la fachada norte y luego en la fachada sur. Las naves siguieron el mismo orden definido para montaje del andamio. La lacería no se hidrofugó puesto que el propio consolidante aplicado por los técnicos restauradores posee cualidades hidrorrepelentes. Lo mismo ocurre con los elementos decorativos y piezas escultóricas como son canes exteriores e interiores, altorrelieves, etc.

Como método general el producto se aplicó en dos manos y mediante rodillo, puesto que, aunque el rendimiento era menor por un mayor desperdicio del producto, este sistema garantizaba mayor penetración del hidrofugante en el soporte (foto 26).
La faja perimetral

Sobre la faja perimetral se realizaron dos tipos de trabajos: por una parte, se actuó sobre la faja superior y, por otra, sobre los elementos ornamentales (piedra escultórica) que ésta posee.

Para garantizar la estanqueidad del elemento y para evitar que el agua de lluvia duerma sobre la faja perimetral se procedió, tras los trabajos de limpieza, a realizar un plano inclinado sobre ésta, mediante el empleo del mortero preparado (mortero a base de cemento hidráulico modificado con polímeros concebido para restauración y/o imitación de piedra natural). Este producto garantizaba una excelente dureza y cohesión, la perfecta adherencia al soporte y, sobre todo, la impermeabilidad del elemento (foto 27).

Por otra parte se procedió por parte de los restauradores a la limpieza de las piezas escultóricas existentes en la faja con sistemas químicos y mecánicos (fotos 28 y 29). Como acabado se procedió a la hidrofugación del conjunto según se describe en el párrafo correspondiente de este capítulo.
Las carpinterías

Las carpinterías de madera existentes en las Torres de Serranos se reducen a las diversas puertas (foto de 30 a 32) que se distribuyen de la siguiente manera: cuatro en la planta baja (la principal bajo el arco de entrada, las dos de acceso a las salas inferiores y la de un asco realizado en los años ochenta); dos en el primer nivel (la de entrada proyectada por el maestro Aixa y la puerta que cierra la nave izquierda del primer piso se realiza en 1985 bajo la supervisión del arquitecto del Ayuntamiento D. Emilio Riera); una en el segundo nivel (la que cierra la sala alta derecha, de la que se desconoce su época de construcción, aunque la existencia de grafiti con fechas anteriores a la guerra de 1936 permiten datarla como anterior a la Guerra Civil).

En todos los elementos de madera se ha llevado a cabo una limpieza de las mismas con eliminación de polvo, depósitos y suciedad medioambiental, y se ha procedido a su mantenimiento mediante el sellado de agujeros, grietas y fendillas con masilla para madera, mediante la aplicación de un bactericida y fungicida y su terminación con barniz acabado mate.
Los elementos metálicos

Todos los elementos metálicos presentes en las Torres de Serranos, tienen una antigüedad como máximo establecida por los trabajos realizados entre 1893-1917 por el maestro Aixa junto con los arquitectos mayores del Ayuntamiento. No obstante, existe algún elemento como la puerta de salida a la terraza central desde la nave media izquierda colocada por D. Emilio Rieto en los años 80.

Los trabajos sobre los elementos metálicos se realizaron en dos vertientes: por una parte sobre las barandillas del monumento y elementos metálicos existentes en las carpinterías y, por otra, sobre la verja exterior.

En el primer caso se procedió a su tratamiento con un barniz para metales previa limpieza con cepillo metálico (foto 33). La asistencia técnica, junto con la supervisión municipal, tomó la decisión de aplicar una sola mano hasta la saturación del soporte evitando así los brillos que apreciaban al aplicar una nueva capa sobre la película protectora ya existente. Este criterio fue también el empleado en los elementos metálicos existentes en las carpinterías de madera (clavos, herrajes, cerraduras, aldabas, etc), en las cerrajerías y en las carpinterías metálicas.

Como trabajo complementario al capítulo de cerrajería se picaron todos los puntos de anclaje de las barandillas dado su estado de conservación, puesto que el aumento de volumen de las piezas metálicas como consecuencia de la oxidación motivó la fractura del punto de anclaje. Por tanto y tras el vaciado del punto de anclaje y la protección de las garras con una imprimación antióxido, se rellenaron las coqueras con resina epoxy, dejando los últimos centímetros dándole un acabado con mortero de cal de forma que quedase integrado en el paramento (foto 34).

Por otra parte se procedió a la limpieza mecánica de la verja exterior mediante proyección de chorro de arena para posteriormente aplicar una imprimación sintética del mismo color que el acabado. Este se realizó con dos manos de acabado sintético mate puesto que, tras varias reuniones, todas las partes intervinientes desestimaron el acabado de la verja mediante oxidón o similar. Este tratamiento se aplicó sobre las puertas metálicas de las naves bajas puesto que, aunque no estaban incluidas en presupuesto, la asistencia técnica y la empresa constructor convinieron realizárselas como compromiso de calidad en el resultado de las obras.
Los pavimentos

La actuación sobre los pavimentos se ha centrado sobre las terrazas superiores, realizando sobre ellas trabajos de limpieza exclusivamente.

Como trabajo previo a las obras de limpieza se retiraron las luminarias que colocadas sobre el pavimento iluminaban el monumento. El pavimento de las citadas terrazas y del paso de ronda era de mortero de cal, por lo que se procedió al repicado de unos 10 cm. de espesor, colocando un nuevo pavimento continuo con mortero realizado con un ligante hidráulico dadas sus propiedades de permeabilidad al vapor de agua. No se colocó una lámina de impermeabilización puesto que ello hubiera obligado a rozar los muros para poder solapar la tela como exige la norma. Por otra parte, una barrera de esas características habría provocado un movimiento descendente de la humedad que con el paso de los años (se constató la existencia de eflorescencias en el intradós de las bóvedas) se ha venido acumulando, potenciando la aparición de sales en las bóvedas existentes bajo las terrazas. Como acabado del pavimento continuo y para ocultar las juntas surgidas durante su ejecución en diferentes jornadas se aplicó una lechada de cal continua (foto 36). Por otra parte en el paso de ronda se liberaron los buzones matafuegos de las piezas que los cegaban, colocando en su lugar vidrio de seguridad (foto 37).

En la terraza central dado que el pavimento existente, según catas realizadas durante el estudio previo, está formado por losas de piedra de más de 10 cm. de espesor tomadas con mortero, y, en caso de su remoción, la posibilidad de recuperación de las piezas era prácticamente nula, se procedió simplemente a la limpieza del mismo con proyección de árido húmedo para posteriormente rellenar las llagas con mortero de cal.

En cuanto a los pavimentos de las salas (formados por losas de piedra de Alcublas), se procedió a su limpieza mediante proyección de árido húmedo posponiendo una actuación sobre ellos en un futuro proyecto de restauración (foto 35).

Como complemento a los trabajos de limpieza se sellaron las juntas de pavimento por las que, durante la ejecución de las obras, se producían filtraciones (encuentro de las escaleras con paramentos, de terrazas con antepechos, etc.). Para el sellado de estas juntas se empleó el mortero Petratex dadas sus características de durabilidad, hidrorrepelencia y posibilidad de acabado.
El sistema antipalomas

Frente a otros sistemas antipalomas que suponen un mayor coste, mantenimiento y una mayor presencia (baterías en el caso de un sistema de descargas eléctricas), se proyectó la colocación de un sistema de bandas de policarbonato y pinchos de acero inoxidable (foto 38 y 39).

Este sistema se adoptó como válido dado su costo, facilidad de colocación, mantenimiento nulo, y menor impacto visual respecto a otros sistemas posibles. Así pues se procedió a la colocación en toda la longitud de la moldura que recorre el monumento a media altura del sistema antivolátiles constituido por bandas de policarbonato extra (resistente a los rayos U.V.) con espuelas de acero inoxidable 302 de diámetro 1,3 mm y altura 11 cm con una longitud de banda de 25 cm.

38 y 39. Prueba y colocación definitiva del sistema anti-palomas
Los trabajos en el foso

Dentro de las obras complementarias al proyecto de limpieza, mantenimiento y conservación se acometieron los trabajos de acabado en el foso. Para ello se procedió a la demolición de la losa que, con objeto de ofrecer un plano de apoyo óptimo para el andamio, se había realizado. En su momento se dispuso bajo la losa una capa de grava y placas de poliestireno expandido en su encuentro perimetral con el paramento por lo que su eliminación pudo llevarse a cabo con relativa facilidad.

Para realizar los citados trabajos, se introdujeron en el foso contenedores de escombros y dos mini-palas gracias a la ayuda de una grúa con brazo telescópico. Las mini-palas fueron equipadas con martillo rompedor para los trabajos de demolición, y la grúa procedió a la sustitución de los contenedores llenos por otros vacíos hasta la completa eliminación del escombros (foto 40).

Realizados los trabajos de demolición y desescombrado se procedió al repaso manual con la eliminación de malas hierbas, piedras y demás restos inertes. Tras una pequeña nivelación y dado que por las características del terreno no fue necesaria su compactación, se procedió a la colocación de la malla impermeabilizante (foto 41). La malla elegida vino suministrada en rollos para su colocación mediante borquillas. Los selares fueron en todos los casos superiores a 10 cm procediendo la asistencia técnica a la supervisión de la misma como paso previo a la colocación de la capa de acabado.

Aunque durante los trabajos de limpieza la asistencia técnica evitó cualquier actuación que se desmarcase del título del encargo y que supusiese una actuación subjetiva sobre el monumento que, por otra parte, hipotecase un futuro proyecto de restauración, atendiendo al expreso deseo del Excmo. Ayuntamiento se colocó una capa de acabado con gravas inertes de 2/3 cm y color según el tono rojizo de los sillares (foto 42).
El plan de mantenimiento

Para preservar verdaderamente lo que se quiere mantener, se deben conocer a fondo las causas que producen el daño y las características del material que se desea utilizar como protección, de manera de poder actuar con la mayor eficacia posible.

En el caso de la piedra, la incidencia de los agentes atmosféricos provoca, con el transcurso del tiempo, fenómenos de degradación como erosión, roturas o microvegetación. En el último siglo, los agentes contaminantes han venido a sumarse a los agentes atmosféricos contribuyendo así a un deterioro más rápido de los materiales lapídeos a causa de la formación de la costra negra.

Desde la antigüedad, se utilizó el jalbelgue o revestimiento con un mortero fino a la cal aplicado con brocha, con la función de aislar la piedra del contacto directo con los agentes atmosféricos, además de reforzar, consolidar y embellecerla mediante la adición de pigmentos y, sobre todo, protegerla contra el agua y sus efectos.

Estos tratamientos de protección utilizados, a buen seguro, a finales del siglo XIV cuando se construyeron las Torres de Serranos, precisaban de trabajos de mantenimiento periódicos que, con toda certeza, se dejaron de efectuar al pasar no más de cien años. En la actualidad, las huellas de estos revestimientos se han perdido casi completamente, por lo que una actual aplicación no sería prudente ya que cambiaría de manera importante la imagen consolidada del monumento.

Por tanto, en la actualidad, para evitar los daños que producen la contaminación unida a la humedad, se utilizan productos químicos hidrofugantes que, sin cambiar el aspecto del monumento, evitan la penetración del agua en los poros de la piedra, ralentizando los fenómenos de degradación. Sin embargo, estos productos tienen una duración limitada en el tiempo, de la misma manera que la tenían los revestimientos antiguos, y necesitan un mantenimiento periódico que garantice su eficacia.

Una garantía de la eficacia del tratamiento de protección evita que los fenómenos de degradación vuelvan a producirse y, por tanto, que se haga necesaria en breve tiempo otra intervención de gran envergadura. La programación de revisiones periódicas del monumento por parte de técnicos especializados constituye un aspecto esencial del mantenimiento que requieren los edificios históricos. Dicha inspección a intervalos regulares.
determinada por la propia naturaleza del monumento debe documentarse y archivarse. Asimismo, un programa coordinado con antelación de los trabajos de mantenimiento necesarios permite ahorrar intervenciones de mayor calado y provee respuestas tempranas con reparaciones eficaces y con un importe económico reducido.

Durante la obra realizada en las Torres de Serranos se realizaron ensayos de absorción (Probeta de Kaarstens) en distintas zonas de los paramentos (foto 43), antes y después de la hidrofugación, para comprobar la eficacia del tratamiento. Gracias a la realización de estos ensayos en puntos bien documentados y accesibles se podrá utilizar el mismo método para comprobar la posible pérdida de eficacia del hidrofugante y la necesidad de su reposición.

Además de esta posibilidad de verificar las necesidades según las variaciones en el tiempo del ensayo de absorción, se ha propuesto un plan de mantenimiento basado en el conocimiento de las propiedades teóricas del tratamiento y de la incidencia de los agentes atmosféricos sobre el monumento. Se ha marcado un programa de renovación periódica del tratamiento de hidrofugación (cada año, cada cinco años o cada diez), según las características físicas del monumento y la incidencia de los agentes atmosféricos en cada zona específica del mismo (foto 44). Los plazos previstos, sin embargo, podrían modificarse en función de las pruebas comparativas obtenidas mediante los ensayos de Probeta de Kaarstens programados como comprobación de las cualidades hidrorrepelentes del paramento hidrofugado.

44. Plano de mantenimiento de la Torre de Levante

Las Torres de Serranos, historia y restauración
45 y 46. Torre de Poniente antes y después de los trabajos de limpieza.

47 y 48. Esquina entre el cuerpo central y la Torre de Poniente antes y después de los trabajos de limpieza.

49 y 50. El cuerpo central con la traza antes y después de los trabajos de limpieza.
BIBLIOGRAFÍA

CARBONELL DE MASY, Manuel: Conservación y Restauración de monumentos, Barcelona

AA.VV.: Metodología de trabajo empleada en la Iglesia de Santo Domingo y claustro del Monasterio de San Juan del Duero (Soria), C.E.D.E.X., Madrid, 1990

CERERCEDA, M. Louis: La conservación de las fachadas de la piedra, Master de Conservación del Patrimonio Arquitectónico, Valencia, 1999

AA.VV.: Manual de diagnóstico y tratamientos de materiales pétreos y cerámicos, Manuals de diagnosi nº 5, Colegio de Aparejadores de Barcelona, Barcelona, 1997

AA.VV.: Curso de Patología, Conservación y restauración de edificios Torno 1, C.O.A.M., Madrid

FARRE B., ALDOMA O.: Limpieza, Restauración y Mantenimiento de fachadas, Prensa XXI, Barcelona, 1989

FERNÁNDEZ PARIS, J. M.: “Valoración del estado de alteración de los materiales pétreos en los monumentos”, en Materiales de Construcción, nº 185, 1982

GÓMEZ DE TERREROS, Mª Gracia, ALCALDE MORENO, Manuel: Metodología de estudio de la alteración y conservación de la piedra monumental, Universidad de Sevilla, Sevilla, 2000

AA.VV.: Diagnóstico y tratamiento de la piedra, Monografía nº 400, Instituto Eduardo Torroja, Madrid, 1990

ARRAIZ Manuel, MARTÍN Antonio: Alteración de materiales pétreos de obras monumentales, acción de la contaminación ambiental, Monografía nº 340, Instituto Eduardo Torroja, Madrid, 1977
Técnicas de diagnóstico aplicadas a la conservación de los materiales de construcción en edificios históricos. Junta de Andalucía, Consejería de Cultura

MALDONADO L., LACERAS E: Tratado de restauración y rehabilitación, U.P.M. Madrid.

