CONSERVATION/TRANSFORMATION

Loughlin Kealy
Stefano F. Musso
Editors
Organizing Institutions

Hosting Institution:
University College Dublin
School of Architecture, Landscape Architecture and Civil Engineering

Co-organizing Institution:
University of Genoa (Italy)
School of Specialization in Architectural Heritage and Landscape
Department DSA of Sciences for Architecture

Sponsors

Government of the Republic of Ireland
Department of the Environment, Heritage and Local Government

The Heritage Council of Ireland

Government of the Republic of Ireland
The Office of Public Works

Carlow County Council

City of Kilkenny

This book presents the papers written by 65 participants after the 2nd Workshop in Conservation, organized by the Conservation Network of the European Association for Architectural Education in 2009 in Ireland.

The workshop was attended by almost 65 participants representing: Belgium, Denmark, France, Ireland, Italy, Poland, Portugal, Spain, United States of America, United Kingdom.

Scientific Committee:
Professor Francesco Doglioni
Professor Loughlin Kealy
Professor Stefano F. Musso
Professor Chris Younès.
This project has been carried out with the support of the European Community and in the framework of the Socrates Programme. The content of this project does not necessarily reflect the position of the European Community, nor does it involve any responsibility on the part of the European Community.
CONTENTS

Acknowledgements

Conservation/Transformation
Loughlin Kealy
School of Architecture, Landscape and Civil Engineering, University College Dublin, Ireland

Expectations. Between conservation and transformation of inhabited milieu: inheriting and transmitting
Chris Younès
"École d'Architecture de Paris-La-Villette", France

“Cum-servāre”/"Trāns-formāre".
Ideas, concepts, actions and contradictions
Stefano Francesco Musso
Dipartimento di Scienze per l'Architettura, Facoltà di Architettura, Università di Genova, Italy

Report of the discussion regarding the visit to Kells Priory, County Kilkenny
Jacqui Donnelly
Architectural Conservation Advisor, Department of Environment, Heritage and Local Government, Republic of Ireland

Report of the discussion regarding the visit to Borris House and demesne, County Carlow
Finola O’Kane
School of Architecture, Landscape and Civil Engineering, University College Dublin, Ireland

Report on the group reflection and discussion regarding the visit to Kilkenny City
Colm Murray
Architecture Officer, Heritage Council of Ireland

Essays

Conservation, Accessibility, Design. Discussion and Practice in Italy
Alberto Arenghi¹, Stefano Della Torre², Valeria Pracchi²
Facoltà di Ingegneria, Università degli Studi di Brescia, Italy¹
Dipartimento BEST, Facoltà di Architettura e Società, Politecnico di Milano, Italy²

Kells: Conserving an enigma
Paul Arnold
School of Architecture, Landscape and Civil Engineering, University College Dublin – Ireland

Between Material and Spiritual Heritage: The Case of the Polish Manor House
Andrzej Baranowski
Faculty of Architecture, University of Technology, Gdansk, Poland

Accessible Use and Sustainable Heritage
Marta Bordas Eddy
Escuela Tecnica Superior de Architettura - ETSAV-UPV, Barcelona, Spain
Working the edge of Appalachia Post-industrial abandoned mine landscapes, environmental mitigation and cultural resource reclamation through design.
Peter Butler¹, Ashley Kyber¹, Kati Singel²
Davis College of Agriculture and Forestry, West Virginia University, USA¹
Masters Degree Candidate, Department of History, West Virginia University, USA²

Ribadavia Castle Remains Intervention: Conserve And Transform Observation, Research, Traces, Intuition.
Miguel Ángel Calvo Salve, Mª Jesús Blanco Piñeiro
CESUGA-UCD School of Architecture – La Coruna - Spain

Ruins preservation, transformation in use: projects for the old town centre of Palermo
Antonella Cangelosi, Zaira Barone
Dipartimento di Storia e Progetto nell’Architettura, Facoltà di Architettura, Università di Palermo, Italy

Modern architectural heritage as a catalyst for education in conservation
Andrea Canziani
Facoltà di Architettura e Società, Politecnico di Milano, Italy

Ancient Buildings and Contemporary Arts: conservation, re-use and transformation of the Insula of Santa Maria Donnaregina in the historic centre of Naples
Stella Casiello, Andrea Pane, Valentina Russo
Dipartimento di Storia dell’Architettura e Restauro, Facoltà di Architettura, Università di Napoli Federico II, Italy

Logique & philosophie analytique au service de l’atelier de conservation du patrimoine
Stéphane Dawans, Claudine Houbart
L’Institute Superiere d’Architecture “Lambert Lombard” de Liège, Belgique

‘Sustainable conservation’: the inclusion of the future in the horizons of restored architectural heritage
Luisa De Marco
Direzione Regionale per i Beni Culturali e Paesaggistici della Liguria, Italy

The sustainability of ‘ancient’: historical architecture as between needs of conservation and energy innovation
Gianluigi De Martino, Angela Maria Savia, Maria Rosaria Vitale
Dipartimento di Storia dell’Architettura e Restauro, Facoltà di Architettura, Università di Napoli Federico II, Italy

From ‘monument’ to ‘place of memory’: a plea for measurable standards and clear terminology in a ‘Eurocode for architectural conservation’.
Andre De Naeyer
Artesis University College, Antwerp, Belgium

Historic cities and sustainability: conservation, transformation and planning in the city of Kilkenny. A preamble to a special problem
Maurizio De Vita
Dipartimento di Costruzioni e Restauro, Facoltà di Architettura, Università di Firenze, Italy
An Archaeological Itinerary within the Irish countryside. Around Kells Priory
Carolina Di Biase
Dipartimento di Architettura e Pianificazione, Facoltà di Architettura e Società, Politecnico di Milano, Italy

Can continuity survive the transformative process in interventions on historic structures? The importance of craft as an aspect of continuity.
Fintan Duffy
Waterford Institute of Technology, Ireland

Image et patrimoine
Christine Estève
Ecole Nationale Superieure d'Architecture M-A Ensam De Montpellier, France

‘Less is more’ and ‘continue-creating’: reflections on communication, sustainability and design in historical sites
Teresa Ferreira
University of Porto, Portugal

A Debate on Restoration: Reflections around Borris House
Donatella Fiorani
Dipartimento di Storia, Disegno e Restauro dell’Architettura, Facoltà di Architettura, Università di Roma “La Sapienza”, Italy

Designing the future of non-monumental heritage
Giovanna Franco
Dipartimento di Scienze per l’Architettura, Facoltà di Architettura, Università di Genova, Italy

Intervention with Design
Pedro Ressano Garcia
Tercud, Universidade “Lusofona”, Lisboa, Portugal

New additions and their physical relation with the existing building
Luca Giorgi, Pietro Matracchi
Dipartimento di Costruzioni e Restauro, Facoltà di Architettura, Università di Firenze, Italy

Conservation and the visitor experience
James Harrison
Cork Centre for Architectural Education, Ireland

Relict lines, a strategic model for the opening up of cultural heritage.
Maria Leus
Department of Design Sciences, Artesis Hogeschool, Antwerp, Belgium

Towards a Terminology of Temporal Structure - an authentic language for architecture?
Caitlin Madden
Royal College of Architecture, Copenhagen, Denmark

Teaching Architectural Restoration through Reflection on Intervention Criteria
Camilla Mileto and Fernando Vegas
Universidad Politecnica of Valencia, Spain
351 Conversions at Borris House and Demesne, Co. Carlow, Ireland
Finola O’Kane
School of Architecture, Landscape and Civil Engineering, University College Dublin, Ireland

361 Ruins and Design: Dialogues over Time
Annunziata Maria Oteri
Dipartimento Patrimonio Architettonico e Urbanistico, Facoltà di Architettura, Università Mediterranea di Reggio Calabria, Italy

375 Wide Accessibility and Conservation of Architectural Heritage in Italy: problems and methodological guidelines
Renata Picone, Arianna Spinosa, Gianluca Vitagliano
Dipartimento di Storia dell’Architettura e Restauro, Facoltà di Architettura, Università di Napoli Federico II, Italy

381 ‘Cross the border - Close the gap’. Suggestions for ‘pop conservation’.
Nino Sulfaro
Faculty of Engineering - University of Messina, Italia

389 Natural and cultural resources
Rita Vecchiattini
Dipartimento di Scienze per l’Architettura, Facoltà di Architettura, Università di Genova, Italy

401 Computer Simulation of the Impact of Restoration on the Building as a Method of Communication
Fernando Vegas, Camilla Mileto
Polytechnic University of Valencia, Spain

411 Built Heritage at risk through climate change
Linda Watson
University of Plymouth, United Kingdom

417 Epilogue
Loughlin Kealy
School of Architecture, Landscape and Civil Engineering, University College Dublin, Ireland

421 List of participants
EAAE acknowledges the generous support received from the Heritage Council, the Environment Fund of the Department of Environment, Heritage and Local Government, the Office of Public Works, Carlow County Council, Carlow Tourism; School of Architecture, Landscape and Civil Engineering, University College Dublin. Thanks are also due to the following:

Mr. John Gormley TD, Minister for Environment, Heritage and Local Government; Malcolm Noonan, Councillor, Mayor of Kilkenny; Joe Crockett, Kilkenny City and County Manager; Bernie O’Brien, Director, Corporate, Community and Enterprise, Carlow County Council; Seamus O’Connor, Director of Planning, Recreation and Amenity, Carlow County Council; Michael Starrett, Chief Executive, Heritage Council; Angela Rolfe, Assistant Principal Architect, Office of Public Works; Andrew and Tina Kavanagh, Borris House, County Carlow; Martin Colreavy, Chief Architect, Heritage Policy and Architectural Protection, Department of Environment, Heritage and Local Government; Aighleann O’Shaughnessy, Senior Architect, Office of Public Works; Eileen O’Rourke, Carlow Tourism, Jacqui Donnelly, Senior Architect, Heritage Policy and Architectural Protection, Department of Environment, Heritage and Local Government, Colm Murray, Architecture Officer, Heritage Council; Aine Doyle, Conservation Officer, Kilkenny City; Finola O’Kane, Lecturer, School of Architecture, Landscape and Civil Engineering, University College Dublin; Margaret Quinlan, Conservation Architect, Anne Teehan, Office of Public Works, Anna Kealy, proof-reader and copy editor.

Illustrations to the text are provided by the authors and editors
Computer Simulation of the Impact of Restoration on the Building as a Method of Communication

Fernando Vegas, Camilla Mileto
Polytechnic University of Valencia, Spain

Even if restoration is carried out very conservatively to respect the building’s integrity, the restoration of an old building always involves a transformation that has a greater or lesser impact on its materiality, character, authenticity and traces of the past. The installation of new electrical wiring or plumbing, the possible substitution of damaged parts, the repair of the lesions found, the filling-in of gaps in the cladding, the re-bonding of the masonry, new coats of paint on the walls, etc., inevitably affect not only the built substance of the building but people’s perception of it also. This impact is unavoidable, but can be controlled so as to be coherent with the expectations and criteria of the restoration project. It is distressing when the restoration of a building has been carried out, to later hear the author of the restoration express his grief about the transformation the building has undergone against his will, and despite the control he has exerted during the works. Even the most detailed project can neglect some issues regarding the impact of the intervention on the building being restored.

Today, informatics makes it possible to simulate efficiently the effects of interventions: the cleaning and conservation of materials (Torsello 1999: 253-259); the insertion of new functional elements or furniture; the filling-in of gaps or the addition of materials, and so forth. The idea is to draw up projects in the awareness of the transformation one is willing to accept, to gauge and assess it, and control it before beginning the works by means of computer simulations. These are very useful tools at the decision-making stage of the intervention, because they help predict the final impact on the building after restoration (Torsello 2005: 15-17).

At the same time, informatics has become an instrument for communication concerning the restoration project, not only with the technicians, architects, builders or bricklayers, but also with the owners or the man in the street, especially in the case of monuments or buildings that form part of the heritage of the inhabitants of a region or country. The restoration project is no longer
expressed only by means of floor plans, elevations, sections and building
details, technical reports or budgets, addressed almost exclusively to the world
of construction professionals and specialists, but can also be manifested by
means of computer simulations that show the building in a way that is very
close to the way it will look when the restoration works have been completed.
Informatics provides not only two-dimensional means, for example, with
photoplanes of the façades, sections, floor surfaces, etc., that is to say, a whole
world of pixels (Torsello 2003), which can be manipulated to prepare proposals
before and after restoration by gauging the impact of the intervention, and
also produce virtual, three-dimensional images of the spaces after restoration
(Fig. 1) and predetermined visual tours that provide a dynamic image of the
visual perception of the final result.
Informatics continues to develop very powerful tools that can be used to
communicate the restoration project to the people who will be working on it and
to the owners before the intervention. Virtual tours and even enhanced reality
not only provide an in-depth knowledge of the final result of the restoration
and its impact on the building, but make it possible to discuss the details
of the execution process and coordinate the tasks of the different craftsmen
participating in the restoration works, even before the works actually begin.
For this purpose, the first step is to prepare photoplanes of the external and
internal façades of the building, that is, rectified photographs reproduced
to a scale that has a metric value. A photoplan contains a great deal more
information than a simple elevational drawing. In fact, a photoplan not only
reflects the geometry of lines, edges, cornices, ridges, fascias, bays, changes
of plane, etc., but also the texture, colour, tone, surface gradation, treatment,
shadows, etc. The photoplan does not substitute for the metric survey, which,
by selecting the information to be drawn in a critical manner, makes it possible
to discover details that might not be visible to the naked eye, but complements
it and serves as a basis, for example, for a possible manipulation of the
photograph afterwards, to make tests or simulations of the results of the
restoration, as in the case we are dealing with here.
Even if it is made in great detail and with care taken to imitate materiality,
virtual computer simulation is usually much cruder than the reality of what
is later executed, but it provides an excellent approximation that makes it
possible to detect beforehand any problems in the process and the result, or
any possible incongruence of a spatial, material, chromatic, textural and other
nature. In other words, the computer simulation of the result of restoration
works is not only a useful way to present them to outsiders or communicate
with the promoters or those performing the restoration, but in the first place
and above all, it is useful for technicians to test and verify on a computer
the possible result of the criteria, techniques and execution modalities they propose in their restoration project.
It is a way of consciously planning the transformation one wishes to make; to measure, gauge and manage it before starting the works by means of computer simulations. The authors of this text have carried out this type of study on several occasions: in the restoration of the antechamber of the Mexuar in the Alhambra in Granada (Spain) (Mileo & Vegas 2008/I); the restoration of the pavement of the bridge in Pobla de Ballestar in Castellón (Spain) (Mileo & Vegas 2008); the treatment of the external surfaces of the Càlig Tower in Castellón (Spain) (Mileo & Vegas 2007). The simulations made, in each case, compare different project options based on diverse criteria and with a view to weighing up the advantages and disadvantages of each possibility, and the different degrees of impact it would have on the building. In this way, the option chosen was the one that best adapted to the criteria defined in the project.
In the case of the restoration of the surfaces of the antechamber of the Mexuar in the Alhambra, not even the client knew exactly what treatment should be applied to walls that during the detailed stratigraphic study had revealed important information about the construction of the Nasrid complex. In this way, the client was offered considered explanations of six options for the most
realistic manner of restoring it (Fig. 2). The advantages and disadvantages of each of the six possibilities were expounded, in view of the results of the computer simulation and the degree of difficulty involved. After setting forth all this reasoning, the authors of this paper chose one of the options and proposed it to the Foundation of the Alhambra and the Generalife as the most suitable for this case. Once this option had been approved, the works began and their execution could be controlled down to the slightest detail, thanks to the existence of this preliminary computer document. Afterwards it was possible to examine not only its ‘before’ and ‘after’ states, but also the computer simulations with the actual results in order to compare them (Fig. 3a, 3b, 3c). The client followed, participated in, and judged the progressive results of the works with the computer simulations prepared as a reference manual to obtain the results of the project. In this case as in others, the computer simulation was not an objective that had to be achieved above and beyond any other consideration. The decisions taken while drawing up the project were reviewed throughout the works, according to the discoveries made in the course of the restoration, so that some changes in the initial computer simulation of the project were made.

The restoration project for the pavement of the bridge in Pobla de Ballestar in Castellón required that the many gaps in the pebble pavement were to be filled in. It was a medieval bridge, in surroundings dating from the same period, and had suffered very little transformation over the years, so any restoration intervention could have affected the perception and materiality of this site which had remained intact for several centuries. Several computer simulations were made to test the impact of the different ways of filling in the gaps in the pavement, from stone with different rendering to brick, and from lime to rammed earth (Figs. 4, 5). These computer simulations were checked and studied with the client, who was delighted to be able to participate in the decision-making process regarding the restoration of a bridge that is a symbol for the inhabitants of the whole region.

Cálig Tower in its present form was first built in the sixteenth century. Most of the today’s façade surface dates from the same period and is the building’s original lime mortar rendering. This rendering has a characteristic texture and patina caused by exposure to the sun, rain, wind and elements over all these years. Naturally, some of the rendering had come loose and left gaps that revealed the masonry fabric underneath. Besides, in an inadequate recent intervention, the original profile and the hipped roof at the top of the tower had been replaced with naked brick battlements in a postmodern style, and a flat roof.

This intervention, which had a great impact on the town, had stirred up a
great deal of indignation among the local people; so much so, that one of the first things they wanted the authors of this text to do in the second restoration phase of the tower was to demolish the battlements and eliminate the previous restoration works. Although we felt the same as the townspeople, the responsibility of using the money provided to restore and consolidate a

![Fig. 2](image)

Antechamber of the Mexuar in the Alhambra (Granada, Spain). General view of the six options offered to the client to help to decide which one was most appropriate.

building to remove the traces of recent restoration works by an architect who had died between the first and second phase and, on the other hand, the patent impossibility of unrestoring the building and leaving it as it had been before, as we were asked to do, encouraged us to seek alternative constructive rather than destructive solutions. So several computer simulations were made with a view to making a well thought-out decision on what to do with the top of the tower, and to finding suitable justification for each option.

Around twenty possibilities were considered (Fig. 6), which ranged from completely eliminating the crenellations, leaving a simple parapet to partial
Fig. 3a
Antechamber of the Mexuar in the Alhambra (Granada, Spain). Photoplan of elevation no.1 prior to restoration.

Fig. 3b
Antechamber of the Mexuar in the Alhambra (Granada, Spain). Computer simulation of photoplan of elevation no.1 after restoration.

Fig. 3c
Antechamber of the Mexuar in the Alhambra (Granada, Spain). Photoplan of elevation no.1 after restoration.
demolition of the postmodern pinnacles on the battlements, or even refashioning these battlements to achieve a proportion that would have greater historic credibility. Within each of these options, several suggestions were made to integrate the contrasting naked brick fabric used to build the battlements in postmodern style, using a coat of coloured lime mortar to achieve acceptable chromatic integration.

All these possibilities afforded by the virtual simulation of restoration that are used in the decision-making process in real projects, both internally to the project and externally as a means of communication with the outside world, can be applied equally to the teaching of architectural restoration. Both the authors of this paper are lecturers at the Higher School of Architecture of the Polytechnic University of Valencia, where they teach architectural restoration to undergraduates and graduates, including seminars, master and doctorate degrees. At all these levels of education, computer simulation is an extremely useful didactic tool to explain to the students each of the projects presented, with their different options for intervention and their respective advantages and disadvantages, the perceptive effect on the building, the impact on the materiality and the historic design of the building.

Undergraduate students do a practical group exercise that consists of preparing

Fig. 4
Medieval bridge in Pobla de Ballestar in Castellón (Spain). Several computer options done to test the impact of different ways to substitute the remains of the pavement.

Fig. 5
Medieval bridge in Pobla de Ballestar in Castellón (Spain). Several computer options done to test the impact of different ways of filling in the gaps in the pavement.
a restoration project in as realistic a way as possible. Before presenting a proposal for a project, the study undertaken comprises detailed maps and a preliminary survey that includes: a historic study; material mapping; a structural study; the presentation of a hypothesis of the mechanisms that can cause lesions and deformations; the study of material pathologies; a stratigraphic study and more (Mileto, Vegas, Noguera 2008). With all this information gleaned, and with the aid of virtual computer simulation (Fig. 7), the students make several virtual restoration proposals, and explain their reasons for each, weighing up their advantages and disadvantages from every possible standpoint.

Finally, computer simulation in the world of architectural restoration is very helpful because of its didactic power in the promotion and appreciation of monuments. Indeed, virtual simulation not only shows what the building will look like after restoration, but can also simulate its state at earlier historic phases since its creation, showing the successive transformations that it has undergone until its final state prior to restoration works. In recent times, this type of virtual computer simulation has also permitted restorers to avoid demolishing parts that have been added on to the building, in the first place by detecting possible incongruities, and in the second place by showing the desired effect in virtual reality, without having to demolish parts of the building that are sometimes important and that conceal other, older building phases.

On the one hand, this type of exercise permits a realistic evaluation of the possible impact before performing the works, and on the other hand, the evaluation of different restoration options by direct comparison of their effects on the building. In this way, the option chosen will be the one that best complies with the criteria defined in the project. This method, by means of the presentation of real cases, is set before the students, who have to draw up a minor restoration project during the year. It is a process of self-evaluation and analysis of the success of one’s intervention in order to encourage critical capacity and develop greater coherence between the theoretical objectives proposed and the actual restoration works in the projects drawn up.

References
Fig. 6
Medieval tower at Càlig (Castellón, Spain). An example of the multiple possible options for the treatment of the external surfaces of the battlements built in postmodern style of the former restoration.

Fig. 7
Practical exercise done by undergraduate students with virtual computer simulation in order to test the impact and appropriateness of the chosen option for restoration.

